TPS400 Series

feica

TCR405

User Manual Mining Application Program

English Version 1.0

To use equipment in the permitted manner, please refer to the detailed safety instructions in the TPS400 User Manual (English version).

© 2003 Leica Geosystems AG Heerbrugg, ® All rights reserved.

Contents - Overview

Introduction	5
Peg Survey	6
Front Line Peg	16
Grades	17
Offset	23
Setting out	27
Tie Distance	29
Mining Editor	31

Contents

Introduction	5
How to use this manual	5
Symbols used in the sequence	
of operation	5
Peg Survey	6
Introduction	6
Before starting Peg Survey	
Start and execution Peg Survey	8
Error messages	9
Proceeding Peg Survey	10
Results	
Saving data	15
Front Line Peg	
Introduction	
Grades	47
Introduction	
Start and execution Grades	
Gradeline Marking	
Results	
Saving data	

Offset Introduction Start and execution Offset Results	. 23 . 24
Setting out	.27
Polar setout	. 27
Orthogonal setout	. 28
Cartesian setout	. 28
Tie Distance	. 29
Mining Editor	.31
Introduction	. 31
Installation on the PC	31
Program content	
Practical Examples	. 32
First Example (Creating fixpoint files,	
define tolerances, uploading) Second Example (Importing of fixpoints	33

Introduction

How to use this manual

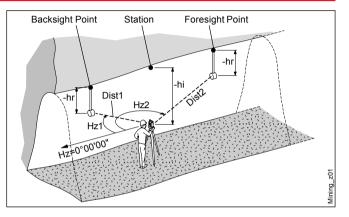
This manual describes the basic operation of the TPS400 Mining field programs. It shall be used together with a TPS400 instrument.

For detailed description about the whole functionality of the TPS400 instrument please refer to the TPS400 User Manual.

Symbols used in the sequence of operation

[MENU]	Press the [MENU] button
ED - E4	Press the function button [F1-F4
	Navigation keys
	Repeat operation

User input is necessary



Important paragraphs which must be adhered to in practice as they enable the product to be used in a technically correct and efficient manner.

Peg Survey

Introduction

The application "Peg Survey" is used to establish a forward peg (point). It is used to control the intermediate horizontal angle between backsight and foresight points. It also checks the horizontal distances and heights of the backsight and foresight points. It computes the coordinates of the foresight point. "Peg Survey" allows users to measure several sets in different sequences. (The quality of measurement is controlled by the tolerances which are set before starting "Peg Survey").

Known:

- · Coordinates of station
- Coordinates of backsight
 point

Unknown:

· Coordinates of foresight point

Before starting Peg Survey

Data uploading using "Mining Editor"

- Station coordinates (East, North, Height, Grade elevation)
- Backsight point coordinates (East, North, Height, Grade elevation)
- Tolerances, sequence, number of sets
- Job definition

Uploading of fixpoint coordinates, tolerances, sequence and number of sets is mandatory to enable the operation of "Peg Survey".

To create new jobs on board the instrument, a set of tolerance must be available.

Start and execution Peg Survey

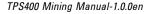
- Press [MENU] and [F1] for programs.
- Press [F1] for Peg Survey.

> Step 1 Select a job.

Confirm the set of tolerances.

> Step 3 Choose "Start" by pressing [F4], then enter point number (PtID) and instrument height (hi) for the station.

The sign for the instrument height (hi) is normally negative.



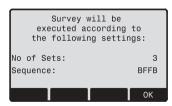
[EXIT]

[SET]

Set Point number (PtID) and instrument height (hi).

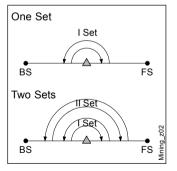
Leaves "Input Station" and returns to the start-up menu.

Error messages


Station or BS point has no valid coords !

 The point number entered is not available in the internal memory or it has invalid coordinates.

Re-enter point number (> Step 3).


Sample dialog:

Number of sets:

One set means to measure two times the backsight point and two times the foresight point in both faces.

The meaning of set is described:

The user must complete the number of sets as preset in the tolerance setting.

Proceeding Peg Survey


Sequence:

It defines the measuring sequence.

Options:

- BFFB
 Backsight-Foresight Foresight-Backsight
- BFBF
 Backsight-Foresight
 Backsight-Foresight
- BBFF
 Backsight-Backsight
 Foresight
- [OK] Leaves this dialog and proceed to the next dialog.

Sample dialog:

Set 1 of total 3

Start with measurement first set of three.

[OK] Leaves this dialog and proceed to the next dialog.

Measure Backsight Point

Information about which backsight point the user has to measure.

[OK] Leaves this dialog and proceed to the measure dialog.

Proceeding Peg Survey, continued

Samp	bie a	alog:	
Backs	sight	Point	1/3
PtID	:		150
Hz	:		98°12'45"
V	:		99°45'23"
hr	:		-1.263 m
HD	:		m
DIS	Т	REC	SEARCH MEASURE

Sample dialog:

> Step 5	Enter t
	height
	backsi

Enter the reflector height (hr) for the backsight point, if required. > Step 6 Aim poir

Aim at backsight point and measure.

[MEASURE] or [DIST]/[REC]

Angle and distance measurements are triggered and stored in the internal memory.

- [SEARCH] Allows users to search and choose a different backsight point.
- [EXIT] Terminates the program and returns to the start-up menu.

> Step 7

[OK]

Enter a desired foresight point number (PtID).

Saves the foresight point number and proceed to the measure dialog.

Proceeding Peg Survey, continued

Sample dialog:

Foresight Point	1/3		
PtID :	151		
Hz :	198°12'45"		
v :	94°45'23"		
hr :	-1.632 m		
HD :	m		
EXIT DIST	REC MEASURE		

[MEASURE] or [DIST]/[REC]

Angle and distance measurements are triggered and stored in the internal memory.

[EXIT] Terminates the program and returns to the start-up menu.

> Step 8

Enter the reflector height (hr) for the foresight point, if required.

Aim at foresight point and measure.

Repeat > Step 6 and > Step 9 until all sets are measured.

T

If the tolerances after a set are not met, the user has the option to continue with the measuring or rejecting the data. [REJECT] Reject the

measurement and measure the set again.

[ACCEPT] Accept the result and continue with the next set.

Results

Sample dialog:

TOLERANCES MET	! (PAGE1)
dHz :	00°00 ' 25"
TolHz :	00°00 ' 50"
dHD BS:	0.001 m
dHD FS:	0.003 m
TolHD :	0.006 m

[PAGE]

Sample dialog:

! (PAGE2)
0.003 m
0.001 m
0.004 m
<all sets=""></all>
ок

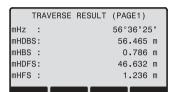
Tolerances dialog:

- dHz: Residual on the horizontal angle
- dHD: Residual on the horizontal distance
- dH: Height residual
- TolHz, TolHD, TolH:

Tolerances horizontal angle, horizontal distance and height

• Set No: Set number

 [OK] Leaves this dialog and proceed to the result dialog.
 [EXIT] Terminates the


Terminates the measurement and returns to the startup menu.

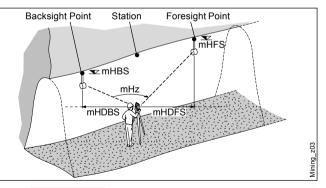
TPS400 Mining Manual-1.0.0en

Results, continued

Sample dialog:

[PAGE]

Sample dialog:


Т	RAVERSE	RESULT	(PAGE2)
Pt BS	:		101
Pt FS	:		102
mHz	:		56°36'25"
Seq	:		BFFB
Num	:		2
EXIT			ок

Result dialog:

- **mHz:** Average intermediate horizontal angle between backsight point and foresight point
- mHDBS/FS: Average horizontal distance (Backsight and Foresight)

- mHBS/FS: Average height (Backsight and Foresight)
- Pt BS/FS: Point number (Backsight and Foresight)
- Seq: Sequence
- Num: Number of sets

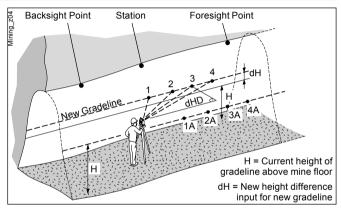
Peg Survey

TPS400 Mining Manual-1.0.0en

Results, continued		Saving da	nta				
[OK] [EXIT]	Quits the program. Terminates the		ving result data are the internal memory:				
	measurement and returns to the start-	Result:		Residual:			
	up menu.	mHz:	Average intermediate	dHz:	Residual on the horizontal angle		
			horizontal angle between backsight	dHD:	Residual on the horizontal distance		
			point and foresight point	dH:	Height residual		
		mHD:	Average horizontal	Coordinat	es foresight point:		
			distance (backsight and foresight)	E:	Easting		
		mH:	Average height	N:	Northing		
			(backsight and	H:	Height point		
			foresight)	GrEI:	Grade Elevation		

Front Line Peg

Introduction


The application "FLP" is used to mark a new line peg (Front line peg). This application is similar to "Peg Survey" and there is only one set of measurement required.

For a more detail explanation of "FLP", please refer to chapter "Peg Survey".

Grades

Introduction

"Grades" application is used to mark gradelines along the side walls of the mines (tunnels). It allows users to input the slope gradient and an offset concerning the grade point. It computes the stake out height difference. The program allows also to map the positions of the grades points along the gradelines.

Known:

- Coordinates and grade
 elevation of station
- Coordinates and grade
 elevation of backsight point
- Slope gradient (station until foresight point)
- Height difference (dH) between current gradeline and new gradeline

Unknown:

- Stake out height difference (dHgt) between measure point and gradeline point
- Horizontal distance (dHD) along the foresight line

Start and execution Grades

You can start Grades either by selecting it in the program or after measuring in the application "Front Line Pag".

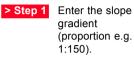
When you start it from programs you have to enter station data and measure to back- and foresight point first.

CONTINUE WITH
GRADES OFFSET

Menu dialog of "FLP":

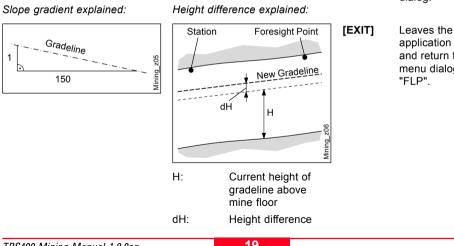
Sample dialog:

		GRADE	S		
Grade	(1:x)	:		4.1	23
Grade	(%)	:	2	24.25	%
Grade	(Ang)	:	13°	°38'0	0"
Direct	ion	:	Down	(-)	
Height		:	C	0.500	m
INPUT	EXI	т		SE	т



If the slope gradient (station until foresight point) is the same like the slope gradient (backsight point until station) then continue direct with > Step 3.

Start and execution Peg Survey, continued



Enter the height difference

> Step 3

[SET] Set the entered values and proceeds to the gradeline marking dialog.

I eaves the application "Grades" and return to the menu dialog of "FI P"

Gradeline Marking

Sample dialog:

	GRADELINE	MARKING
PtID:		100
dHgt:		0.552 m
dHD :		3.123 m
Hz :		126°56'23"
HD :		10.365 m
EXIT	DIST	REC MEASURE

> Step 4

Enter a desired point number (PtID).

> Step 5

Aim at target point and measure.

[MEASURE] or [DIST]/[REC] Measurement is triggered and stored

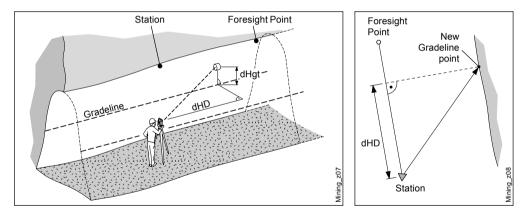
in the internal memory.

[PREV]

Returns to the start of "Grades" application. For a new definition of slope gradient and height difference repeat > Step 1 until > Step 3 [EXIT]

Leaves the application "Grades" and return to the menu dialog of "FLP".

TPS400 Mining Manual-1.0.0en



Results

Grades computes the height difference (dHgt) between measure point and stake out point and the horizontal distance (dHD) along the foresight line.

Height difference (dHgt) and horizontal distance (dHD) explained:

Results, continued

Saving data

3

If the sign is negative the grade point are above the measure point.

If the sign is positive the grade point are below the measure point.

Turn the telescope until the height difference (dHgt) is zero, then repeat the measurement (> Step 5). The following result data are stored in the internal memory:

Measurement data:

PtID:Point numberHz:Horizontal angleV:Vertical angleHD:Horizontal distanceSD:Slope distancedH:Height difference

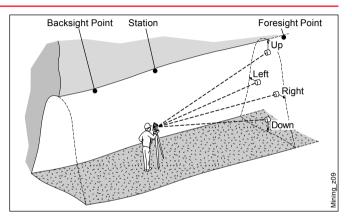
Coordinates of new gradeline point:

E:	Easting
N:	Northing

H: Height

Grades Result:

daH:	Stake out height difference
daHD:	Horizontal distance along the foresight line
Grd:	Slope gradient
05	Orada alguetian


GE: Grade elevation

Offset

Introduction

"Offset" application is generally used to obtain sections of the tunnels for volume computation as well as mapping of the tunnels. It allows users to input offset value (left, right, up and down) and computes after measurement the actual coordinates of the tunnel walls.

Known:

- · Coordinates of station
- Coordinates of backsight
 point
- Offset value

Unknown:

 Point coordinates of the tunnel walls

Start and execution Offset

You can start Offset either by selecting it in the program or after measuring in the application "Front Line Pag".

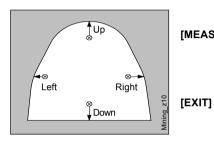
When you start it from programs you have to enter station data and measure to back- and foresight point first.

Menu dialog of "FLP":		
CONTINUE WITH	Pt Of Hz	
GRADES OFFSET	HD	
GRADES OFFSET		

Sample dialog:

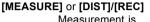
		OFFSET
PtID	:	100
Offse	t:	1.500 m
		LEFT 🜗
Hz	:	123°12'36"
HD	:	m
EXIT		MEASURE

Step 1 Enter a desired point number (PtID) and the offset value.


> Step 2 Using ↓ for the offset definition.

- ► (Left, Up, Right, Down)
 - (Left, Down, Right, Up)

Start and execution Offset, continued


Definition of offset explained:

Station Offset Right Point

> Step 3 Aim

Aim at target point and measure.

triggered and stored in the internal memory.

Leaves the application Offset and return to the menu dialog of "FLP".

After storing, the program returns to the measuring dialog.

If you want to measure a new point repeat > Step 1 until > Step 3.

TPS400 Mining Manual-1.0.0en

Results

Saving data

The following result data are stored in the internal memory:

Measurement data:

PtID. Point number Ηz· Horizontal Angle

- V٠ Vertical Angle
- HD: Horizontal distance

SD: Slope distance

The measurement data are already corrected.

Offset information:		
Offset:	Offset value	
OffsetDir:	Offset direction (left, up, right, down)	

Coordinates of new offset point:

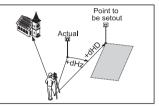
Easting N: Northing

E:

H:

Height

Setting out

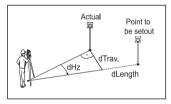

Polar setout

dHz.

This program calculates the required elements to stakeout points from coordinates or manualy entered angles, horizontal distances and heights. Setting out differences can be displayed continuously. Setting out coordinates from memory Procedure:

- Select the point.
- [DIST] Starts measurement and calculation of the stake-out elements.
- [REC] Saves the displayed values.
- [B&D] Input direction and Hz-distance of stake out point.
- [MANUAL] Enables simplified dHD: input of a point without ptID and without the possibility of storing the data of the point. ddH:

Normal indication of polar setout offsets dHz, dHD, ddH.

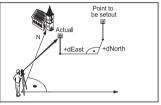

- Angle offset: positive if point to be set-out is to the right of the actual direction.
 - Longitudinal offset: positive if point to be setout is further away.

Height offset: positive if point to be setout is higher than measured point.

Setting out

Orthogonal setout

The position offset between measured point and setout point is indicated in a longitudinal and transversal element.



- dLength: Longitudinal offset: positive if nominal point further away.
- dTrav.: Transversal offset, perpendicular to line-of-sight: positive if nominal point is to the right of measured point.

dHeight:

Height offset: positive if point to be setout is higher than measured point. Setting out is based on a coordinate system and the offset is divided into a north and east element.

Cartesian setout

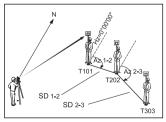
dEast	Easting offset between setout and actual point.
dNorth	Northing offset between setout and actual point.
dHeight:	Height offset: positive if point to be setout is higher than measured point.

Setting out

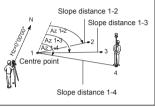
Tie Distance

The application Tie Distance computes slope distance, horizontal distance. height difference and azimuth of two target points measured online. selected from the Memory or entered using the Keypad. The user can choose between

two different methods:


E1

Polygonal (A-B, B-C)


E2

Radial (A-B, A-C)

Polygonal Method:

Radial Method:

In principal both methods are the same

Any differences will be described.

Procedure:

- 1. Determine first target point.
- [ALL] Starts measurement to the target point.
- [FIND] Searches internal memory for point entered

2. Determine second target point.

Proceed as with first target point.

3. Result is displayed.

dHD

Hbb

Brg	Azimuth between
	point1 and point2.
dSD	Slope distance

Slope distance between point1 and point2.

Horizontal distance between point1 and point2.

Height difference between point1 and point2.

TPS400 Mining Manual-1.0.0en

Tie Distance

Softkeys -	polygonal method:	Softkeys - radial method:		
[NewPt 1]	An additional missing line is	[NewPt 1]	Determine new central point.	
	computed. Program starts again (at	[NewPt 2]	Determine new radial point.	
	point 1).	[POLY]	Switch to poly-	
[NewPt 2]	Point 2 is set as starting point of a		gonal method.	

[RADIAL] Switches to radial method.

new missing line. New point (Pt 2) must be measured.

Mining Editor

Introduction

"Mining Editor" (PC Program Package) is a Windows-based program used for the data exchange between the TPS400 Series and the PC.

Installation on the PC

The installation program for the "Mining Editor" can be found on the CD-ROM supplied. Please note that the "Mining Editor" program can only be installed under the operating systems MS Windows 95, 98, ME, NT4.0, WINDOWS2000, XP. For the installation call program "setup.exe" in the directory "MiningEditor\Disk1" on the CD-ROM and follow the onscreen instructions to complete the installation.

Program content

The "Mining Editor" can be used for the following purposes:

- Data Import & Export Import and export fixpoint files (ASCII format).
- Data Transfer between PC and TPS400 instrument
 Upload and download of fixpoint files, upload of tolerances, download of measurement data and conversion of measurement data to various formats for peg calculation and archiving.

Program content, continued

Practical Examples

 Define and upload Tolerances

> Defining tolerances, editing tolerances (password protected), uploading tolerances

Creating fixpoint files
 Creating and editing of
 fixpoint files (Coordinates)

The following pages of the manual describe the functionality of "Mining Editor" with two practical examples.

• Example1:

Creating fixpoint files, Define tolerances, Uploading them to the instrument

• Example2:

Importing of fixpoints in ASCII format

First Example (Creating fixpoint files, define tolerances, uploading)

Creating fixpoint files

- Open a new file: *File → New*
- 2 Enter point number, coordinates, backsight reference point, grade elevation.

₿M	Mining.gsi					
	Point ID	Easting	Northing	Elevation	Backsight Point	Grade Elevation
1	P101	77.765	55.987	90.265	P100	88.265
2	P102	88.365	60.325	91.354	P101	90.365
3						

Define tolerances

Open tolerances: **Options** \rightarrow **Tolerances** \rightarrow **Edit** Enter a password.

Create a new password: *Options* → *Password*

Select a measuring sequence (BFFB, BFBF or BBFF).

Save the created coordinate list: *File → Save As*

(B = Backsight point and F= Foresight point).

In the fixpoint entry module, the "Mining Editor" allows users to create, view, modify and save coordinate lists.

Enter number of sets.

First Example (Creating fixpoint files, define tolerances, uploading), continued

Tolerances	
Sequence Limits	
Tolerance Profile:	
Primary	
Fillinaly	<u> </u>
	0.0065
Horizontal Angle Limit:	0.0065
Horizontal Distance Limit:	0.005
Horizontal Distance Limit:	0.000
Height Limit:	0.010
rieigni Limit.	locard

> Step 5

- a) Select a tolerance type (Primary, Secondary, Tertiary).
- b) Enter the values for:
 - Horizontal Angle Limit
 - Horizontal Distance Limit
 - Height Limit

Upload Fixpoints and Tolerances to the instrument

Ensure that the unit setting on the instrument (Menu / All Settings / Unit Settings) is identical to the units set in the "Mining Editor" (*Options* → *Settings*).

Open a fixpoint file: *File → Open* Choose Upload: *Data → Upload*

> Step 2

Select a job.

Enter jobname, operator and comments.

Operator and comments are optional.

Select a tolerance type.

TPS400 Mining Manual-1.0.0en

Second Example (Importing of fixpoints in ASCII format)

Process import fixpoint files

File → Open

> Step 1

The "Mining Editor" allows to import fixpoint files in ASCII format.

ASCII-File search and select. Open the selected file.

Follow the wizard onscreen instructions to produce the correct format.

Open File ? × > Step 4 Look in: 🚖 ascii • 🗈 🐣 📰 🏛 🗐 5000 txt 🗐 test2 txt 🗒 100 txt Ē 10000 txt QRT room.crd 100comma_space.TXT Swiss.asc 100keyword.TXT 🔊 t1.asc 100mixed TXT 🔊 test idx 1 20000.txt 🛋 test2.asc • File name: Swiss.asc Open Files of type: All Files (*.*) • Cancel <none> 7

Save the created file: *File → Save as*

TPS400 Mining Manual-1.0.0en

Leica Geosystems AG, Heerbrugg, Switzerland, has been certified as being equipped with a quality system which meets the International Standards of Quality Management and Quality Systems (ISO standard 9001) and Environmental Management Systems (ISO standard 14001).

Total Quality Management-Our commitment to total customer satisfaction

Ask your local Leica Geosystems agent for more information about our TQM program

734337-1.0.0en

Printed in Switzerland - Copyright Leica Geosystems AG, Heerbrugg, Switzerland 2003 Original text

Leica Geosystems AG CH-9435 Heerbrugg (Switzerland) Phone +41 71 727 31 31 Fax +41 71 727 46 73 www.leica-geosystems.com